Spins as Probes of Different Electronic States
نویسندگان
چکیده
Nuclear spins are efficient probes of electronic states. Because most NMR experiments are performed in thermal equilibrium, they probe the electronic ground state—the only state that is significantly populated under ambient conditions. Probing electronically excited states becomes possible, if magnetic resonance techniques are combined with optical (laser) excitation. Depending on the nature of the electronic state, drastic changes of the magnetic resonance parameters may be observed. We discuss the basic principles of this type of investigation. Depending on the lifetime of the electronically excited state, it is possible to measure separate spectra of ground and excited state if the lifetime is long on the NMR timescale, or an averaged spectrum if the lifetime is short. We present examples for both limiting cases using rare earth ions and semiconductor heterostructures. 2007 Wiley Periodicals, Inc. Concepts Magn Reson Part A 30A: 116–
منابع مشابه
نانومغناطیس
Nanomagnetism is a branch of nanotechnology, which studies the magnetic properties of nanoparticles. Single-domain superparamagnetim, superferromagnetism and superspin glasses are different magnetic states which have been observed in a system of nanoparticles. Each of these magnetic states has unique features which determines the application range of magnetic nanoparticles assembly. Shell of na...
متن کاملDressed-state resonant coupling between bright and dark spins in diamond.
Under ambient conditions, spin impurities in solid-state systems are found in thermally mixed states and are optically "dark"; i.e., the spin states cannot be optically controlled. Nitrogen-vacancy (NV) centers in diamond are an exception in that the electronic spin states are "bright"; i.e., they can be polarized by optical pumping, coherently manipulated with spin-resonance techniques, and re...
متن کاملNoncollinear magnetic ground state of PrFeAsO
Noncollinear magnetic investigations of the ground state in PrFeAsO have been performed by the density-functional theory. We calculated the total energy and made structure optimization, and the electronic density of states of PrFeAsO was analyzed. There are three different magnetic structures in PrFeAsO defined by experiments. Based on these magnetic structures, we studied four collinear and fo...
متن کاملIntrinsic magnetism at silicon surfaces.
It has been a long-standing goal to create magnetism in a non-magnetic material by manipulating its structure at the nanoscale. Many structural defects have unpaired spins; an ordered arrangement of these can create a magnetically ordered state. In this article we predict theoretically that stepped silicon surfaces stabilized by adsorbed gold achieve this state by self-assembly, creating chains...
متن کاملQuantum control of hybrid nuclear-electronic qubits.
Pulsed magnetic resonance allows the quantum state of electronic and nuclear spins to be controlled on the timescale of nanoseconds and microseconds respectively. The time required to flip dilute spins is orders of magnitude shorter than their coherence times, leading to several schemes for quantum information processing with spin qubits. Instead, we investigate 'hybrid nuclear-electronic' qubi...
متن کامل